3.2 Route-2

Having described Route-1, the adjustments to the isy file to obtain a script performing a Route-2 type of calculation are quite easy. Only a few points should be taken into account.

  • The first step is to run an HF or DFT Gaussian calculation, which could be a single point energy or a geometry optimization calculation, saving the check point file.

  • Transform the check point file in a formatted file.

  • Run MOMO check_point.fchk, writing an isy file.

As an example, let us consider the borazine molecule and the following Gaussian input file, for a geometry optimization at the B3LYP/6-31G(d) level.

 1 %chk=borazine.chk
 2 # opt freq b3lyp/6-31g(d) 10f 6d
 3
 4 borazine geo opt at b3lyp/6-31g(d)
 5
 6 0 1
 7 X1
 8 X2 X1 1.0
 9 N1 X2  NX X1  90.0
10 X3 X2 1.0 N1  90.0 X1  180.0
11 N2 X2  NX X1  90.0 N1  120.0
12 N3 X2  NX X1  90.0 N1 -120.0
13 B1 X2  BX X1  90.0 N1  180.0
14 B2 X2  BX X1  90.0 B1  120.0
15 B3 X2  BX X1  90.0 B1 -120.0
16 H1 X2  HN X1  90.0 N1    0.0
17 H2 X2  HN X1  90.0 N2    0.0
18 H3 X2  HN X1  90.0 N3    0.0
19 H4 X2  HB X1  90.0 B1    0.0
20 H5 X2  HB X1  90.0 B2    0.0
21 H6 X2  HB X1  90.0 B3    0.0
22 Variables:
23 NX 1.407110
24 HN 2.409672
25 BX 1.447738
26 HB 2.643086
27

When the Gaussian calculation has finished, type the commands

prompt> formchk borazine
prompt> MOMO borazine.fchk

and, whitin the MOMO run, type

yxz
spg D3d
write borazine.isy
y
q

Then, the borazine.isy file should read:

  1 #!/bin/bash
  2 mo230xl << next
  3 BORAZINE GEO OPT AT B3LYP/6-31G(D)
  4
  5 D3H
  6 N1          2.66600150E+00    0.00000000E+00    0.00000000E+00
  7 S   6
  8 4.17351146E+03  1.83477216E-03
  9 6.27457911E+02  1.39946270E-02
 10 1.42902093E+02  6.85865518E-02
 11 4.02343293E+01  2.32240873E-01
 12 1.28202129E+01  4.69069948E-01
 13 4.39043701E+00  3.60455199E-01
 14 S   3
 15 1.16263619E+01 -1.14961182E-01
 16 2.71627981E+00 -1.69117479E-01
 17 7.72218397E-01  1.14585195E+00
 18 P   3
 19 1.16263619E+01  6.75797439E-02
 20 2.71627981E+00  3.23907296E-01
 21 7.72218397E-01  7.40895140E-01
 22 S   1
 23 2.12031498E-01  1.00000000E+00
 24 P   1
 25 2.12031498E-01  1.00000000E+00
 26 D   1
 27 8.00000000E-01  1.00000000E+00
 28 N2  N1     -1.33300075E+00    2.30882502E+00   -6.07049125E-17
 29 N2  N1     -1.33300075E+00   -2.30882502E+00    6.07049125E-17
 30 B1         -2.74211085E+00    0.00000000E+00    0.00000000E+00
 31 S   6
 32 2.06888225E+03  1.86627459E-03
 33 3.10649570E+02  1.42514817E-02
 34 7.06830330E+01  6.95516185E-02
 35 1.98610803E+01  2.32572933E-01
 36 6.29930484E+00  4.67078712E-01
 37 2.12702697E+00  3.63431440E-01
 38 S   3
 39 4.72797107E+00 -1.30393797E-01
 40 1.19033774E+00 -1.30788951E-01
 41 3.59411683E-01  1.13094448E+00
 42 P   3
 43 4.72797107E+00  7.45975799E-02
 44 1.19033774E+00  3.07846677E-01
 45 3.59411683E-01  7.43456834E-01
 46 S   1
 47 1.26751247E-01  1.00000000E+00
 48 P   1
 49 1.26751247E-01  1.00000000E+00
 50 D   1
 51 6.00000000E-01  1.00000000E+00
 52 B2  B1      1.37105543E+00   -2.37473766E+00    6.87768824E-17
 53 B2  B1      1.37105543E+00    2.37473766E+00   -6.87768824E-17
 54 H1          4.57733472E+00    0.00000000E+00    8.75811540E-47
 55 S   3
 56 1.87311370E+01  3.34946043E-02
 57 2.82539436E+00  2.34726953E-01
 58 6.40121692E-01  8.13757326E-01
 59 S   1
 69 1.61277759E-01  1.00000000E+00
 61 H2  H1     -2.28866736E+00    3.96408815E+00   -4.13715765E-17
 62 H2  H1     -2.28866736E+00   -3.96408815E+00    4.13715765E-17
 63 H2  H1     -5.00445550E+00    0.00000000E+00   -8.75811540E-47
 64 H2  H1      2.50222775E+00   -4.33398559E+00    8.66709485E-17
 65 H2  H1      2.50222775E+00    4.33398559E+00   -8.66709485E-17
 66
 67 next
 68 if [ $? == 0 ]; then
 69 mo400xl << next
 70 BORAZINE GEO OPT AT B3LYP/6-31G(D)
 71 SODILI 1E-6 EOSCISTOP 50
 72 gaumos borazine.fchk yxz
 73
 74 21
 75 next
 76 if [ $? == 0 ]; then
 77 mo600xl << next
 78 BORAZINE GEO OPT AT B3LYP/6-31G(D)
 79
 80 momento-di-dipolo salva
 81 momento-lineare   salva
 82 momento-angolare  salva
 83
 84 next
 85 if [ $? == 0 ]; then
 86 mo690xl << next
 87 BORAZINE GEO OPT AT B3LYP/6-31G(D)
 88 HFEXCHANGE x.xx
 89
 90
 91 next
 92 if [ $? == 0 ]; then
 93 mo710xl << next
 94 BORAZINE GEO OPT AT B3LYP/6-31G(D)
 95 HFEXCHANGE 0.20
 96
 97
 98 next
 99 if [ $? == 0 ]; then
100 rm -f fort.4 fort.20
101 tar -a -cf borazine.tgz fort.*
102 rm -f fort.*
103 fi
104 fi
105 fi
106 fi
107 fi
108 exit

In this case also, to perform a magnetic perturbed calculation only, lines 85-91 must be deleted, as well as line 103. Now the script is ready and can be submitted to perform the B3LYP/6-31G(d) calculation of the magnetic perturbation using the command

prompt> ./borazine.isy >& borazine.osy &

SYSMO program output files are collected in the borazine.osy file and borazine.tgz contains the FORTRAN files for the subsequent current density calculations.


Some concluding remarks for this section are as follows.

  • Geometry and basis set are taken from the fchk file, this is the only way.

  • Always using Cartesian Gaussian functions by means of the 6d and 10f options on the Gaussian route card.

  • The MOMO program recognizes only a few functionals and their HF exchange fractions. Therefore, always check line 95 of the isy file to see whether the correct HFEXCHANGE value has been inserted.

  • Pure functionals require HFEXCHANGE 0 and the calculation of two-electron integrals can be skipped by inserting the string MAXREC 0 in line 4 followed by a new blank line. In this case the calculation is very fast.

  • If the Gaussian calculation is at HF level, remove line 95.